Cluster Science

Our sample of lensing galaxy clusters
Sample selection

 We built our cluster sample by taking into account existing samples, such as  the Abell (Abell et al. 1989) and MACS (Ebeling et al. 2001Ebeling et al. 2010) cluster catalogs, the LoCuSS and CLASH surveys, the Weighing the Giants and CCCP projects, to build a first extended list of possible cluster targets.

We then mined  the CADC and the SMOKA archives to find the publicly available MegaCam@CFHT and SuprimeCam@Subaru exposures within 90 arcmin of these clusters. Given the archival data availability, we performed a first-pass target selection by requiring:

  • the cluster redshift  to be in the range 0.1 < < 0.7;
  • that data taken in at least two broad-band filters are available;
  • that the total exposure time of the available data in the lensing band (either R or I) is at least ~ 4000 s.

We have downloaded the available scientific (and, when necessary, calibration) data for this preliminary cluster sample, and we are currently performing the data reduction (for the SuprimeCam/Subaru data) and quality evaluation (for both the SuprimeCam/Subaru and MegaCam/CFHT data) to assess  the amount of available data suitable to perform a weak lensing analysis, and thus define our final cluster sample.

Our preliminary sample of galaxy clusters can be found below:

ClusterCoordinates (SIMBAD link)Redshift
A1068 160.1855 39.9529 0.138
A1111 162.6520 -2.6047 0.165
A1132 164.5986 56.7948 0.136
A115 13.9608 26.4106 0.197
A1201 168.2270 13.4358 0.169
A1204 168.3351 17.5940 0.171
A1413 178.8246 23.4061 0.143
A1423 179.3219 33.6104 0.213
A145 16.7221 -2.4826 0.191
A1553 187.7040 10.5460 0.165
A1602 190.8530 27.2799 0.200
A1612 191.9640 -2.8305 0.180
A1689 197.8734 -1.3413 0.184
A1703 198.7718 51.8174 0.280
A1758 203.2172 50.5261 0.279
A1763 203.8336 41.0011 0.228
A1835 210.2581 2.8787 0.253
A1902 215.4190 37.2917 0.160
A1914 216.4861 37.8165 0.171
A2009 225.0820 21.3691 0.153
A2034 227.5489 33.4870 0.113
A2055 229.6906 6.2322 0.102
A2069 231.0307 29.8892 0.116
A2104 235.0339 -3.3042 0.155
A2111 234.9193 34.4244 0.230
A2125 235.3090 66.2659 0.246
A2163 243.9540 -6.1449 0.202
A2187 246.0584 41.2438 0.183
A2204 248.1955 5.5758 0.152
A2218 248.9618 66.2118 0.171
A2219 250.0838 46.7119 0.226
A222 24.3918 -12.9914 0.213
A2259 260.0402 27.6689 0.164
A2261 260.6136 32.1329 0.224
A2390 328.4034 17.6957 0.230
A2409 330.2190 20.9685 0.148
A2537 347.0930 -2.1916 0.295
A2552 347.8884 3.6343 0.302
A2631 354.4154 0.2715 0.278
A2667 357.9142 -26.0841 0.230
A2744 3.5862 -30.4002 0.308
A2813 10.8537 -20.6236 0.292
A291 30.4296 -2.1967 0.196
A370 39.9696 -1.5719 0.375
A383 42.0140 -3.5291 0.187
A586 113.0847 31.6329 0.171
A611 120.2368 36.0567 0.288
A655 126.3712 47.1337 0.127
A68 9.2785 9.1567 0.255
A689 129.3519 14.9720 0.279
A697 130.7398 36.3660 0.282
A773 139.4726 51.7270 0.217
A781 140.1074 30.4946 0.298
A795 141.0220 14.1727 0.136
A851 145.7396 46.9806 0.407
A963 154.2656 39.0470 0.206
A980 155.6190 50.1051 0.158
CL0024.0+1652 6.6483 17.1622 0.390
GHO132029+3155 200.7032 31.6549 0.308
MACSJ0025.4-1222 6.3876 -12.3881 0.585
MACSJ0257.1-2325 44.2865 -23.4348 0.505
MACSJ0416.1-2403 64.0381 -24.0675 0.420
MACSJ0417.5-1154 64.3945 -11.9091 0.440
MACSJ0451.9+0006 72.9779 0.1051 0.429
MACSJ0717.5+3745 109.3981 37.7456 0.548
MACSJ0744.8+3927 116.2200 39.4568 0.686
MACSJ0850.1+3604 132.5291 36.0723 0.378
MACSJ0911.2+1746 137.7979 17.7746 0.505
MACSJ0913.7+4056 138.4396 40.9414 0.442
MACSJ1108.8+0906 167.2298 9.1008 0.466
MACSJ1115.8+0129 168.9669 1.4990 0.352
MACSJ1149.5+2223 177.3994 22.3986 0.544
MACSJ1206.2-0847 181.5512 -8.8007 0.440
MACSJ1226.8+2153 186.7152 21.8736 0.436
MACSJ1423.8+2404 215.9490 24.0779 0.545
MACSJ1532.8+3021 233.2242 30.3494 0.363
MACSJ1621.3+3810 245.3533 38.1691 0.461
MACSJ1720.2+3536 260.0700 35.6072 0.387
MACSJ1731.6+2252 262.9164 22.8663 0.389
MACSJ1824.3+4309 276.0721 43.1656 0.483
MACSJ2211.7-0349 332.9411 -3.8270 0.397
MACSJ2214.9-1359 333.7394 -14.0026 0.503
MACSJ2228.5+2036 337.1417 20.6217 0.411
MACSJ2243.3-0935 340.8363 -9.5885 0.447
MS0015.9+1609 4.6385 16.4368 0.547
MS0451.6-0305 73.5459 -3.0145 0.539
MS1358.4+6245 209.9608 62.5181 0.329
MS1621.5+2640 245.8979 26.5706 0.428
MS2137.3-2353 325.0632 -23.6613 0.313
PLCKG100 350.5621 28.5204 0.310
RXCJ1504.1-0248 226.0311 -2.8047 0.215
RXCJ2155.6+1231 328.9250 12.5241 0.192
RXJ0142.0%2B2131 25.5142 21.5214 0.280
RXJ1347.5-1145 206.8775 -11.7528 0.451
RXJ1423.8+2404 215.9490 24.0779 0.545
RXJ1524.6+0957 231.1843 9.9691 0.516
RXJ1651.1+0459 252.7840 4.9923 0.154
RXJ1720.1+2638 260.0414 26.6248 0.164
RXJ2129.6+0005 322.4164 0.0886 0.235
SDSSJ0851+3331 132.9120 33.5184 0.370
SDSSJ0915+3826 138.9125 38.4496 0.397
SDSSJ0957+0509 149.4133 5.1589 0.448
SDSSJ1029+2623 157.3042 26.3922 0.584
SDSSJ1038+4849 159.6816 48.8216 0.430
SDSSJ1050+0017 162.6675 0.2883 0.590
SDSSJ1138+2754 174.5373 27.9085 0.451
SDSSJ1152+0930 178.1975 9.5041 0.517
SDSSJ1152+3313 178.0006 33.2284 0.362
SDSSJ1315+5439 198.7885 54.6314 0.552
SDSSJ1329+2243 202.3937 22.7212 0.452
SDSSJ1343+4155 205.8869 41.9176 0.418
SDSSJ1420+3955 215.1683 39.9196 0.607
SDSSJ1446+3033 221.6394 30.5514 0.464
SDSSJ1456+5702 224.0036 57.0391 0.484
SDSSJ1621+0607 245.3849 6.1220 0.342
SDSSJ1632+3500 248.0447 35.0091 0.500
SDSSJ2111-1114 317.8306 -1.2399 0.638
ZWCL0104.4+0048 16.7062 1.0561 0.160
ZWCL0949.6+5207 148.2047 51.8848 0.214
ZWCL1023.3+1257 156.4920 12.6856 0.143
ZWCL1231.4+1007 188.5730 9.7661 0.229
ZWCL1459.4+4240 225.3460 42.3443 0.290

 

Dealing with archival data

For an accurate weak lensing analysis, it is crucial to  perform a careful data reduction and selection.

Since  our analysis is based on a large amount of archival data, we haven’t a direct control of the observational strategy, and an extensive check of all the pre-selected data is impossible.

These issues require some ad-hoc solutions, and some caveats should be kept in mind. For example:

– It is very important to select, among all the available frames, only the observations that are suitable to our analysis, and discard those that would degrade or bias our analysis.

But a visual inspection of the large((It’s really a large number: to give you an idea, we are talking of more than 20.000 SuprimeCam exposures, and more than 3000 MegaCam exposures!)) number of wide-field observations that we are analyzing would not be feasible.

Therefore, the quality check of the science exposures is performed by visual inspection of the SPREAD_MODEL vs the Signal-to-noise ratio (SNR) plot. This plot is proven to be an effective diagnostic tools to identify exposures for which the PSF modeling was problematic (see e.g. Bouy et al., 2013). Both the SPREAD_MODEL and SNR parameters are derived from the object catalogs obtained with SExtractor. The SPREAD_MODEL is defined  to be:

  • positive for extended sources, such as galaxies;
  • negative for detections smaller than the PSF;
  •  close to zero for point sources.

The movie below, shows this diagnostic plot for a selection of CFHT images”

Lensing clusters through model fitting